• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / 4 Best Practices for Optimizing Injection Molding Tolerances

4 Best Practices for Optimizing Injection Molding Tolerances

December 14, 2020 by SyBridge Technologies
injection molding tolerances

Originally published on fastradius.com on December 14, 2020

Injection molding is a versatile manufacturing method ideal for mass production. The process involves injecting molten thermoplastics or thermosets into durable metal molds, ejecting the part once it has cooled, and then repeating that process. This allows manufacturers to quickly and economically produce high volumes of identical components that reliably meet strict mechanical requirements.

While factors like material shrinkage — which occurs naturally as the plastic sets — can be fairly easily predicted, slight variations between parts are to be expected. However, it’s crucial that product teams set a precise range of acceptable variation that will allow the part to function as intended. These acceptable ranges of deviation, or “tolerances,” become especially important for larger parts as well as those assembled from multiple components. If the variation between components is not kept within acceptable limits for standard injection molding tolerances, they may not fit together at all and parts may not function as intended.

Injection molds are typically CNC machined to tolerances of +/- 0.005 inches, unless more restrictive tolerances are required. In general, “tight tolerance” injection molding refers to +/-.002 inches in variation, and “very tight” to +/-.001 inches. Normal tolerances for injection molding tend to be less expensive to manufacture than parts with tight tolerances, which is why determining the optimal tolerance for a particular part is vital for producing high quality parts at an affordable rate.

Here are some injection molding tolerance guidelines that designers and engineers can follow to optimize part tolerances:

1. Design parts for manufacturability

Anticipating tolerance concerns early in the design phase is key to preventing costly and time-consuming redesigns during later stages of production. To minimize the potential for warping and part misalignments, designers should ensure that they are adhering to design for manufacturability (DFM) best practices. DFM principles entail designing parts with the specific method of manufacturing in mind. The manufacturing method — and its unique restrictions — should inform factors such as wall thickness, draft angles, and design features like bosses.

Maintaining uniform wall thicknesses throughout a part is key to preventing uneven shrink rates, which can lead to deformities that inhibit the part’s ability to hold tight tolerances. In many cases, design features like support ribs are more efficient and effective in providing strength than increasing wall thickness.

Draft angles — the slight taper applied to part surfaces aligned with the direction of pull — are essential for ensuring that the component ejects easily from the mold without warping or suffering scrapes. Appropriate angles naturally vary based on part design and the desired surface finish, but 1.5-2 degrees of draft is generally a safe minimum for most injection-molded parts.

Bosses are raised part features commonly used to fasten multiple plastic components together during assembly. If bosses are designed too thick, they can cause sink marks on part surfaces. Furthermore, if bosses are not attached to the sidewalls of a part (typically done via support ribs), they become prone to distortion or warping, which can significantly impede components’ ability to fasten together.

2. Select the ideal material for the application

The tolerance of injection-molded parts can also be significantly impacted by material — which is why material selection is equally as important as part design. Injection molding is compatible with a wide range of plastic resins — whose mechanical characteristics can be strengthened or modified with additives, fillers, and stabilizers. The flexibility of material choice afforded by injection molding is highly beneficial for product teams, as it enables them to refine and enhance the material and performance qualities they’re seeking for a specific application.

It’s important to note that different resins have different shrinkage rates — which must be factored into both material selection and the design of molding tools. If part assemblies include components made from more than one material, the different shrink rates need to be taken into account to guarantee that the individual pieces fit together as intended. Having a clear understanding of the various properties of particular resins is key to ensuring consistent plastic injection-molding tolerances.

3. Keep tooling considerations in mind

Because mold tools are typically designed to be slightly oversized — to account for material shrinkage — it’s important to first determine which material(s) will be used. Well-designed tools play an integral role in ensuring that parts cool properly and adhere to strict injection molding tolerance standards.

Mold tooling needs to provide consistent, repeatable heating and cooling between shots —  otherwise tight tolerances will be difficult to maintain, which is especially important to keep in mind as parts (and tools) increase in complexity. Poor or inconsistent cooling can lead to significant deviations from tolerance requirements. By monitoring injection pressure, resin viscosity, and fill time, engineers can track and adjust production variables to ensure proper pressure, heating, and cooling during the injection process.

Well-designed tools
Well-designed tools play an integral role in ensuring that parts cool properly and adhere to strict injection molding tolerance standards.

Determining an ideal location for the gate (the aperture through which resin flows into the mold) further helps to prevent uneven fills and minimize improper shrinkage and warping. Complex injection-molded parts may require more than one gate to ensure even fill distributions and proper cooling. Likewise, the location of ejector pins can impact dimension consistency, as some materials may not be fully rigid when removed from the mold (often to minimize cycle time). Placing the pins so that they minimize warping and damage to surface finish is vital.

While the tolerances of the tooling itself are typically very tightly controlled (and CNC-machined molds allow for a degree of refining if they are not producing components within acceptable tolerance), this is another important consideration that product teams should double check.

4. Implement repeatable process controls

Manufacturing processes involve a significant number of variables that can affect the viability and quality of a part, and process controls are a means of calibrating these variables so as to minimize deviation.

Pressure and temperature sensors embedded in the mold tooling often play a key role developing robust process controls, as they provide real-time feedback on these parameters, empowering teams to make rapid adjustments if unacceptable variation is detected. Once those variables are controlled in a repeatable fashion, the mold tooling will be able to create parts with precise tolerances and minimal variation.

Standardizing environmental factors
Standardizing environmental factors like temperature, injection pressure, and holding time enables teams to refine production processes to ensure consistent results.

Plastic resins generally have higher thermal expansion coefficients — meaning that they are more prone to changing in size as temperatures change. As such, parts with tighter tolerances often need to be measured at consistent temperatures to ensure dimensional consistency and performance.

Improve injection molding tolerances with the aid of an expert manufacturing partner

While some degree of variation is inescapable in manufacturing, ensuring that these deviations are kept within acceptable ranges is crucial for producing high-performing, dimensionally consistent parts. Reliable, repeatable processes, high-quality mold tooling, and optimizing part designs for manufacturing are key for guaranteeing accuracy and consistent part-to-part quality.

Partnering with an on-demand manufacturing expert like SyBridge is a surefire way to ensure that part designs are optimized for production and will adhere to strict dimensional tolerances. Our team brings decades of technical expertise to each production job. We’re not simply a service provider — we’re a full service partner committed to delivering end-to-end support from design and prototyping to production and fulfillment. Every job we take on is executed at speed and held to the highest quality standards. Ready to get started? Contact us today.

Category: Knowledge CenterTag: Injection Molding

Related Articles

Injection Molding Parts

3 Tips for Creating Stronger Injection Molding Parts

Injection molding

What You Need To Know About Material Compatibility For Multi-Material Injection Molding

PVC

Know Your Materials: Polyvinyl Chloride (PVC)

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

PET

Know Your Materials: Polyethylene Terephthalate (PET)

mold making

How to Make Data Work for Mold Productivity and Performance

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy