• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / Know Your Materials: Polymethyl Methacrylate (PMMA/Acrylic)

Know Your Materials: Polymethyl Methacrylate (PMMA/Acrylic)

July 8, 2021 by SyBridge Technologies
Polymethyl Methacrylate

Originally published on fastradius.com on July 8, 2021

Polymethyl methacrylate (PMMA) is a commonly used manufacturing plastic. Because of its high transparency, PMMA is also known as “acrylic glass” or “plexiglass.” The material characteristics of PMMA are noteworthy for a few reasons: it is a

Polymethyl methacrylate (PMMA) is a commonly used manufacturing plastic. Because of its high transparency, PMMA is also known as “acrylic glass” or “plexiglass.” The material characteristics of PMMA are noteworthy for a few reasons: it is a highly translucent, glass-like material that offers high impact and environmental resistance, making it an excellent alternative for true glass in applications where shatter resistance is a desired trait. This includes aircraft and automotive windscreens, architectural applications, electronics, aquarium windows, and even medical implants.

Because of the wide range of potential applications and uses for PMMA, it’s important for product teams to fully understand the ins and outs of this versatile material in order to leverage its benefits most fully. Here’s what you need to know.

What is polymethyl methacrylate acrylic?

PMMA, or poly(methyl methacrylate) is a clear, colorless polymer with the molecular formula C5H8O2.

PMMA is produced through polymerization, which involves placing the methyl methacrylate monomers into a mold with a catalyzing agent. This allows PMMA to be formed into a wide variety of shapes, ranging from large sheets and blocks to small pellets and granules.

PMMA is compatible with all thermoplastic manufacturing methods (including injection molding, compression molding, and others), and can be subsequently machined, sized with saw or laser cutting, or polished.

PMMA
PMMA is extremely biocompatible, leading to the material finding use in various medical applications, including contact lenses, dentures, bone replacements, and even cosmetic surgery, where it is used to help reduce wrinkles or scars.

Polymethyl methacrylate properties and mechanical specifications

PMMA has a refractive index of 1.49 and can allow up to 92% of light to pass through, which is more than many other thermoplastics and even some grades of glass. PMMA is also lightweight — typical density for the material is 1.17-1.20 g/cm3, or half that of glass — and much more resistant to impact and shatter than glass. PMMA can be thermoformed without losing any of the material’s optical clarity. At the same time, PMMA can also be colored or dyed to match any shade, extending its versatility to applications beyond glass replacement.

For instance, PMMA also provides good resistance to UV light and environmental wear, which can be further improved with stabilizers and additives. Not only that, PMMA is tough and durable, offering better scratch resistance than polycarbonate (PC) and other transparent polymers, and demonstrates low moisture absorption, allowing it to be used in the creation of parts where dimensional stability is critical. PMMA is therefore ideal for outdoor applications where the part or apparatus is intended to withstand exposure to the elements.

Despite being created from methyl methacrylate, which is a known irritant and suspected carcinogen, PMMA is extremely biocompatible, leading to the material finding use in various medical applications, including contact lenses, dentures, bone replacements, and even cosmetic surgery, where it is used to help reduce wrinkles or scars. In fact, PMMA is sometimes known as “bone cement” in medical circles because of how frequently it is used to cushion implants against the skeleton. PMMA is also simple to polymerize within a hospital environment, making it especially useful in medical manufacturing.

While PMMA can be food-grade, it is not safe to use in microwaves or dishwashers, as the material is only dimensionally stable to temperatures of 149°F (65°C). Typically, glass is recommended over PMMA for applications involving food.

Why choose polymethyl methacrylate plastic?

As mentioned, PMMA is similar to PC and other translucent plastics, but this material stands out from the pack in a few key ways.

One of the most noteworthy advantages of PMMA is its scratch resistance. It is well suited to optical lenses and devices, as the material is less likely to splinter, shatter, or cause harm to someone’s skin or eyes if the lens or device happens to break. Parts made from PC, in contrast, are much more prone to scratching and denting the longer they are used.

PMMA is more brittle than PC, meaning that it remains stiff and cracks when stressed or impacted. While PMMA does provide some shatter resistance, PC is able to provide much greater impact strength, and in some applications, these two qualities can be used in tandem. Display windows, for instance, may be crafted from an outer layer of scratch- and shatter-resistant PMMA and an inner layer of a wind-resistant and highly impact-resistant material like PC.

PMMA also offers a cost-effective alternative to PC when a given application would benefit from greater tensile and flexural strength, light transmissibility, surface polishability, and UV resistance. PC, on the other hand, is a more expensive material to manufacture with and is better suited for applications that require high impact strength and chemical and heat resistance.

Getting started with polymethyl methacrylate resin

PMMA is a highly versatile thermoplastic resin noted for being a strong, lightweight, and cost-effective alternative for many applications where glass might otherwise be used. However, this weather-resistant material also happens to be biocompatible, leading to its use in a wide range of medical devices as well. There are a number of reasons you might want to consider using PMMA for your product, but ultimately, it’s up to you to determine which materials are best suited for your parts– ideally with the help of a trusted manufacturing partner.

SyBridge is leading the charge in rethinking modern manufacturing capabilities. Our cutting-edge on-demand manufacturing platform makes it easy for customers to engage with us during every step of the production timeline, from product design to fulfillment. Our team of dedicated designers and engineers specializes in creating high-quality parts from a wide breadth of materials. Contact us today to get started.

Category: Knowledge CenterTag: Materials

Related Articles

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Aluminum-Alloy

Decoding the Aluminum Alloy Numbering System

CNC

The Ultimate Guide to CNC Machining Acrylic Parts

Filaments

What are the Strongest 3D Printing Filaments?

Metal Cylinders

The Benefits of Heat Treating Metal

Biocompatibility

Medical Device Manufacturing and Biocompatible Materials

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy