• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / Guide to Elastomer Prototyping

Guide to Elastomer Prototyping

July 17, 2020 by SyBridge Technologies
Prototyping

Originally published on fastradius.com on July 17, 2020

Prototyping is a key phase of the manufacturing lifecycle that typically links the end of the design stage with the start of production. The process enables designers and engineers to refine part design, gather feedback, and gain stakeholder buy-in.

Prototypes can be created a number of different ways. Rapid 3D prototyping, which uses additive manufacturing methods to produce parts, has become an increasingly popular choice for prototyping because it allows engineers to quickly and cost-effectively identify design issues before production begins. This helps to avoid potentially costly or time-consuming tool revisions, improves product quality, and ensures that production stays on-track with projected timelines.

However, certain part applications and materials aren’t good fits for 3D-based prototyping. Processes like fused deposition modeling (FDM) produce non-isotropic parts that might be more fragile and react differently than production elastomer parts, while other additive methods may be limited by cost or material options.

This can present a challenge for rapid prototyping elastomer molding, seals, and other highly elastic parts with low durometers, where flexibility is a desirable material characteristic. While developments in additive manufacturing methods have enabled engineers to print rubber, or “elastomer” products, there are still limitations to what can be done with the technology. However, elastomer components and prototypes can be effectively made with traditional manufacturing methods.

Methods to Produce Elastomeric Prototypes

Processes like compression molding and transfer molding are highly efficient methods for producing rubber parts such as gaskets, seals, and O-rings, but the tooling required to manufacture rubber compression mold designs tends to come with a high price tag. The two most common traditional methods for prototyping rubber parts are urethane casting and die-cutting.

Urethane casting involves creating a silicone mold around a master pattern with the exact geometry of the desired final part. The master pattern can be CNC-machined or 3D-printed, depending on the application and geometric complexity. Once the mold sets, it can be cut open and used to create highly precise replicas of the master pattern in low volumes. One significant advantage of urethane casting is that the process allows for more durometers and colors than other methods of elastomer prototyping. Die-cutting of elastomeric sheet stock is also very common for gaskets and seals.

CNC milling is a subtractive manufacturing process that uses rotating tools to quickly and efficiently cut material away from a solid workpiece, thereby shaping the desired part. This method can also be used to create rubber designs, but there’s one major design limitation: attempting to cut elastic, pliable material with any degree of accuracy is incredibly difficult. For this reason, only very rigid rubbers can be effectively milled.

Cast urethane prototyping is a more efficient way of creating soft rubber parts. If for some reason the prototype must be milled, engineers should consider placing a collar just above the mill to prevent the rubber workpiece from moving. Rubber workpieces can also be frozen in liquid nitrogen prior to milling to increase their hardness.

One of the primary advantages of 3D printing rubber prototypes is speed. Once the CAD file is finalized, parts can often be manufactured in less than a day. However, some additive methods come with material limitations, which means that while they may be effective at testing the fit and form of components, they are often not ideal for functional testing.

Some material limitations vary based on process. One of the first methods of 3D-printed elastomer prototyping used selective laser sintering (SLS) with an elastic base material. Prototypes created through SLS display some elasticity, but still exhibit relative stiffness and are prone to breaking after repeated flexing. These parts also often have low-resolution finishes.

The development of PolyJet technology enabled engineers to print multiple materials in different combinations from the same head. This allows for the production of prototypes that accurately simulate the various properties of rubber, including durometers ranging from 27-95 on the Shore hardness scale. Unfortunately, many PolyJet materials lack the strength of true rubber prototypes, though some newer materials provide more comparable strength and functionality.

Carbon’s Digital Light Synthesis (DLS) technology can also be used to print elastomer prototypes, with one advantage of the process being that it allows for greater isotropic properties. This method has some limitations when it comes to material properties, durometer, color, part complexity, and part size, but can be used to create production-quality rubber prototypes.

Prototyping Rubber Parts Efficiently

Technological advances have made it much easier to rapidly and economically prototype elastomer parts, and letting the required material specifications determine which process manufacturers is key to maximizing efficiency. If the prototype is intended as a proof of concept or to test the form and fit of components, then the efficiency afforded by 3D printing is hard to beat. On the other hand, urethane casting has far fewer material limitations, which will often prove more useful for the purpose of functional testing.

At SyBridge, we’re committed to streamlining the manufacturing process of every project from concept to delivery. We work hand-in-hand with our customers during each phase of the production lifecycle, helping product teams of all shapes and sizes optimize their part design, prototype, select best-fit materials, test, and manufacture at scale. Our team of seasoned designers, engineers, and advisors are prepared to become your dedicated manufacturing partner. We promise cost- and time-efficient production that yields products of unmatched quality. Contact us today to get started.

Category: Knowledge CenterTag: Materials, Prototyping

Related Articles

Injection molding

Tips for Injection Molding With High-Temperature Plastics

CNC

Key Differences for Acrylic and Polycarbonate Machining

PC-ABS

Know Your Materials: Polycarbonate (PC)

Medical part manufacturing

How to Choose Tooling Materials for Medical Applications

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Chemicals

A Guide to Understanding Additive Material Chemical Compatibility

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy