• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / 5 Common Applications for Plastic CNC Machining

5 Common Applications for Plastic CNC Machining

May 15, 2020 by SyBridge Technologies
Plastic CNC

Originally published on fastradius.com on May 15, 2020

CNC machining is a subtractive manufacturing process that forms a completed part by steadily drilling, turning, or milling away thin layers from a solid block of metal or plastic. A Computer Aided Design (CAD) file guides the computer-controlled cutting tool down a set tool path to shape the final part.

Since a computer is responsible for most of the machining during this process, the process is known for quick turnaround and for producing high-quality, uniform parts. What’s more, CNC machining can produce parts with some of the tightest tolerances possible.

However, there are a few key limitations that engineers and product designers should keep in mind when considering CNC machining for plastic parts. The most significant drawback of CNC  machining is often cost. Although CNC machining operating costs vary by method initial startup costs can be high across the board. As such, this manufacturing process is unlikely to be cost-effective outside of medium to high volume production runs.

While no manufacturing process is perfect, CNC machining offers numerous benefits that make it an excellent choice for many parts. Product managers and engineers should consider employing CNC machining for the following plastic applications.

1. Medical devices

Plastic CNC machining is an excellent choice for medical devices and components due to the inherent precision afforded by the method. Medical device manufacturers trust CNC machining to produce identical, intricate parts reliably.

The design flexibility allowed by the process is also advantageous. Engineers can easily change or manipulate digital design files to achieve their desired part, rendering the creation of personalized medical devices like dental surgical guides or cardiac implants quick and easy. Further, there are many off the shelf medical-grade materials available for CNC machining.

2. Food and beverage industry parts

As U.S. Food and Drug Administration (FDA) regulations evolve and consumers increasingly demand healthy, sustainable food and beverage manufacturing, the demand for high-quality food service equipment is higher than ever. Food and beverage industry manufacturers need parts that are tough enough to work around the clock, but safe and gentle enough to come into contact with the foods people eat every day.

CNC machining helps engineers achieve this delicate balance. Ultra-high molecular weight polyethylene (UHMWPE), a popular plastic used in CNC machining, is a stain-, wear-, odor-, and solvent-resistant plastic that meets all FDA, USDA, and 3-A Dairy requirements. It can be used to make everything from spray bars to assembly line parts.

3. Semiconductor parts

Semiconductive parts offer an intermediate level of electrical conductivity, classified somewhere between a conductor and an insulator. Semiconductive parts are used in a range of electronic devices, including diodes, integrated circuits, transistors, and more. They are shockproof, typically compact, and can last almost a lifetime.

Building these parts would not be possible without plastic CNC machining. Semiconductor parts and assemblies are often highly intricate and demand extremely tight tolerances and high-polish surface finishes. The precision and mechanical strength enabled by CNC machining make this process ideal for the production of such parts. Plastic CNC machining produces tough parts with excellent electrical properties, which is ideal for applications such as electrical insulators, small circuits, gaskets, and watertight seals.

4. Automotive and aerospace parts

When it comes to manufacturing high-performance engineering parts and components for automotive and aerospace applications, CNC machining is an ideal method due to the wide variety of available plastics that meet strict regulations.

For example, ULTEM® (PEI) can perform at temperatures above 400°F and is frequently used to create fire blockers, airplane seat covers, and turbine engines. Plastic CNC machining might be one of the more expensive manufacturing processes available, but aerospace engineers can’t put a price on strength and durability when it comes to mission-critical parts.

5. Functional testing

Plastic CNC machining can also be used to conduct functional testing when a small batch of a prospective parts must be made with the final material before beginning the injection molding process.

Suppose an engineer has a design for a custom gear that will be mass-produced using injection-molded polytetrafluoroethylene (PTFE). The engineer may be inclined to test the part by 3D printing it first; unfortunately, however, PTFE isn’t 3D printable. CNC machining, on the other hand, is compatible with a much broader range of materials, including PTFE.

With CNC machining, engineers and product teams can machine a number of parts in the final material, conduct functional testing, verify the design, then release the design for mass production via injection molding.

Give plastic CNC machining a try

While it often requires high upfront costs, CNC machining provides advantages that other methods simply cannot match.

Here at  SyBridge, we can work with you to determine if your part is a good candidate for plastic CNC machining or any other manufacturing process. We help our customers evaluate their project requirements and find the best technology for the job.  Let’s make new things possible — contact us today.

Category: Knowledge CenterTag: CNC Machining

Related Articles

Passivation

Passivation: Post-Processing for Rust and Corrosion Prevention

CNC Machining Aerospace

The Role of CNC Machining in the Aerospace Industry

Chemical finishes

A Guide to Chemical Finishes for CNC Machined Parts

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

CNC

Key Differences for Acrylic and Polycarbonate Machining

CNC

The Ultimate CNC Design for Manufacturability (DFM) Checklist

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy