• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / An Overview of Metal Finishing Options

An Overview of Metal Finishing Options

March 9, 2020 by SyBridge Technologies
Metal finishing

Originally posted on fastradius.com on March 9, 2020

After a metal part has been created, it’s common practice to treat the exterior with a finish to meet visual or performance requirements. Finishing processes can provide a number of benefits, from increased part durability and tarnish resistance to higher electrical resistance or torque tolerance. 

In this article, we’ll touch on some of the most widely-used metal finishing processes, as well as how each works, and some common applications that use these popular finishes.

Mechanical processes

Brushing

Many metal parts have rough edges, burrs, or other surface blemishes as a result of the manufacturing process. One effective way of removing these imperfections is brushing, which uses abrasive belts or wire brushes to give the part’s exterior a uniform, parallel grain surface texture.

Polishing

Polishing uses a cloth wheel to buff the part’s surface, resulting in a glossy and smooth untextured finish that’s ideal for decorative pieces. Buff polishing can also be used to round edges. Due to limitations with the cloth wheel’s reach, intricate or fragile parts or parts with recessed features may be better served by a different finishing process.

Tumbling

Tumbling removes burrs by agitating parts in large barrels filled with water and abrasive media — which may be made of steel, plastic, ceramic, or natural materials — of various shapes and sizes. This process, as well as vibratory bowl finishing, polishes and smooths parts, including potentially sharp edges, by creating rounded edges called radii. Tumbling occurs after production but before parts go through any additional plating or finishing processes.

Sand or bead blasting

Abrasive blasting processes use high-pressure streams of sand or glass beads to remove surface impurities on the substrate. While tumbling treats the entire surface of the part, sand or bead blasting can also be used to treat specific areas. This creates a smooth and clean surface texture, especially noticeable in softer metals.

Chemical and electrical processes

Powder coating

Powder coating applies a decorative finish of melted plastic powder to the surface of the substrate. The process can create glossy, matte, or textured surfaces that appear similar to paint but provide far greater durability.

Hot blackening

Hot blackening adds a layer of black oxide to the surface of a substrate through a high-temperature process that runs the part through a set of tanks filled with cleaners, caustics, and coolants. The result is a matte black surface finish with high abrasion resistance. This finish is commonly seen on tools, firearms, and auto parts.

Electrocoating

Also called e-coating, this process submerges large parts in an epoxy paint solution and uses electrically charged particles to evenly apply a layer of paint that helps protect against corrosion — something that’s especially helpful for jewelry. E-coatings can be used as primer coats for furthering finishing.

Electroplating

The plating process is similar to e-coating. Instead of paint, however, a thin layer of metal is applied to the substrate surface using an electric current. This process bolsters the durability of the part, as well as its corrosion resistance.

Electropolishing

Electropolishing uses an electrochemical process to smooth the surface of a metal substrate ion by ion, resulting in smooth surface that is microscopically featureless.

Anodizing

Primarily used to finish aluminum parts, anodizing uses a chemical process to change the surface of the substrate to aluminum oxide. The process not only protects the part from everyday wear and tear, but it makes the part more impact- and corrosion-resistant. While typically colorless, the anodized finish can be dyed.

Passivation

This non-electric process renders stainless steel parts more resistant to rust by using acid to remove free iron from the substrate surface. This creates an inert, or passivated, protective layer that is less likely to corrode.

Chromate conversion coating

This process uses chromic acid to coat the entire surface of certain metal substrates, including aluminum and zinc. This not only makes the parts highly corrosion-resistant, but it also gives them self-healing qualities, so that if the metal becomes scratched or abraded, the chromate finish will slowly cover the damage, preventing corrosion from entering the pores of the metal.

Aesthetic finishing

Painting

Paint is the most common method of protecting steel parts. The process typically includes three layers of epoxy and polyester glass flake paints designed to keep the steel safe from corrosion and damage.

Pad printing

This process transfers 2D images onto 3D parts using an etched plate and a silicone pad. Pad printing is commonly used in the industrial and garment industries for printing designs onto garment tags, flash drives, pens, watch faces, and other surfaces.

Screen printing

Screen printing uses a mesh and blocking stencil to transfer ink onto a part. A squeegee or other tool spreads ink across the open mesh apertures, which catalyzes contact between the screen and the part’s surface, thereby depositing the ink.

Hydrographics

Also known as immersion printing, this process involves placing the substrate in a tank filled with water and a soluble printed film. This allows the finishing layer to completely coat the surface of the part, which is especially useful for parts with complex geometries. The finish that hydrographics provides is extremely durable, offering increased chemical- and UV-resistance.

Choose the right processes for you

As this list shows, there are quite a few options to choose from when it comes to finishing services for metal parts. Which process or combination of processes makes the most sense will of course depend on a few factors, including budget, timeline, and the part’s intended end-use.

Balancing all of these factors can be a challenge. That’s why engineers, designers, and entrepreneurs choose to partner with SyBridge. Our team of experts works with you at every step of manufacturing process — from designing, prototyping, and iterating to post-production and fulfillment — to make sure that every part is optimized for its application and backed by quality assurance. Contact us today to get started.

Category: Knowledge CenterTag: Materials

Related Articles

Medical part manufacturing

How to Choose Tooling Materials for Medical Applications

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Hydrolysis Resistant Plastics

Top 5 Hydrolysis-Resistant Plastics

Metal Cylinders

The Benefits of Heat Treating Metal

plastic pellets

Examining the UV Resistance Qualities of Polypropylene and Nylon

UHMW

Know Your Materials: UHMW

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy