• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / Adding Injection Molded Features to Your Part

Adding Injection Molded Features to Your Part

July 14, 2022 by SyBridge Technologies
Injection Molding

Originally published on fastradius.com on July 14, 2022

Injection molding involves creating a precise mold consisting of a core and a cavity and injecting molten plastic into the tooling. Once it has cooled, the injection molding machine’s ejector plate will engage, releasing the part from your mold.

Injection molding offers high precision, speed, a wide range of compatible materials, and a low cost per part. Specific features can be added to injection molded parts, such as text, surface finishes, and hinges.

Why Add Injection Molding Features to a Part?

Optimizing part design by adding injection molding features can help cut back on post-processing steps, saving time and money in the long run. After all, the more features that can be accomplished with a single process, the better. Adding injection molding features to a part design allows for a more functional and aesthetic part and lower total production costs.

Commonly Added Features With Injection Molding Techniques

When it comes to adding injection molding features, options include:

  • Text: Injection molding makes adding labels, instructions, logos, and diagrams to your parts easy. Instead of relying on post-process labeling (and incurring the associated costs), text and logos can be incorporated directly onto your plastic parts with small alterations to the design.
  • Surface finishes: Similarly, surface finishes can be added to an injection molded part by altering the mold rather than including costly and time-consuming post-processing steps. For example, you can use a textured mold instead of bead blasting every part.
  • Insert molding: Injecting molten material around an insert (often made of metal, plastic, or ceramic) will create a strong bond between the two materials. Since this reduces the need for secondary assembly, insert molding will also help save time and money.
  • Overmolding: Overmolding can also help cut costs and reduce the need for secondary assembly processes. Like insert molding, this process involves creating parts from multiple materials — the first is a rigid substrate made from an injection molded thermoplastic, and the second is an additional shot in, on, or around the substrate. Overmolding can bond materials chemically or mechanically to create more functional or aesthetically pleasing parts.
  • Living hinges: Instead of attaching metal hinges later, designing parts with molded-in hinges can simplify the design and production process. With the right design, enclosures and covers can be processed in a single molding operation, saving on time, materials, and expenses.
  • Snap-fit joints: Snap-fit joints are often included in plastic parts to reduce or eliminate the need for traditional fasteners like nuts, screws, washers, and spacers. Incorporating snap-fit joints directly into a design can help cut out the need for secondary hardware and assembly costs.
  • Threads: Injection molded parts can be designed with threads to eliminate the need for secondary thread cutting and reduce lead times and costs.

Designing for Injection Molding Features

Optimizing parts according to DFM principles will enable you to produce high-quality, high-performing products as time- and cost-efficiently as possible. Plus, since machining tooling is an expensive and lengthy process, ensuring the capability of your mold is essential. For this, we recommend that you work with an experienced tooling design engineer. As you design your parts, you’ll need to consider the following:

Design Threads Carefully

Including threads in an injection molded part can help cut post-processing costs, but the thread’s location and design can impact the total tooling cost. While placing external threads on a mold’s parting line is the simplest and most cost-effective option, it also raises the possibility of flash and mismatched threads. However, if the threads aren’t centered on the parting line, the design will need to include side actions or slides, which could raise the molding costs.

One solution is to use a rotating insert, also known as a threaded core, on internal threads. The insert rotates and unscrews before the part is ejected from the mold; and with some short internal threads, it can simply be stripped out of the mold at ejection. But regardless of thread placement, limit the thread pitch to less than 32 threads per inch, and stop threads short of the end to prevent cross-threading.

Select the Right Material for Living Hinges

If a design includes living hinges, the material you choose becomes critical. Tough, lightweight, and flexible, polypropylene (PP) is an ideal living hinge material.

In addition to material considerations, including a radius at the hinge’s midpoint will help the two parts close, depending on the intended range of motion. You’ll also need to make sure that you design the hinge thick enough to endure repeated bending, but still thin enough to flex.

Pay Attention to Wall Thickness

Inconsistent wall thickness can result in warping, short shots, sink marks, and other serious complications, so using uniform wall thickness wherever possible is key. However, if the wall thickness of your part design changes, gradual transitions will help keep the part intact. A good rule of thumb for the ideal wall thickness in injection molding is between .040 and .140 inches.

Use Sliding Shutoffs for Clips and Snap-Fits

Using sliding shutoffs enables you to create things like holes and hooks without needing to resort to inserts or side actions. These are particularly useful when designing parts with clips and snap-fits, as creating sliding shutoffs to match the part’s clips and snap-fits will help lower tooling and operating costs.

Include Draft and Reduce Tall Features’ Height

The minimum draft angle is 0.5° for any features perpendicular to the parting line. Ideally, the feature should have a draft angle of 1° or 2°. However, if the design has tall features like ribs, bosses, or standoffs, incorporating larger draft angles will help ease the ejection process and prevent scrape lines.

Tall features and deep molds increase the risk of sink marks, so you should make every effort to minimize a feature’s height whenever possible. This will help prevent the need for increased venting and longer end mills.

Keep an Eye on Your Text

Adding text and logos to an injection molded part should be strategic to ensure production is as efficient as possible and the results are legible. Use a sans-serif font with a minimum stroke length (think of the crossbar in an ‘A’ as an example) of 0.020 inches, as the curls of serif fonts and small strokes make milling the tooling difficult.

Using raised text makes the wording easier to read and produce than recessed text, but it should be kept to 0.015 inches tall or less. The text should be facing the direction of mold pull to ensure smooth ejection and avoid the need for manually loaded inserts and side actions. However, if you use a flexible material like thermoplastic elastomer (TPE), mold pull direction won’t be a factor.

Follow Other DFM Best Practices

With any injection molding project, we encourage you to follow design for manufacturability (DFM) best practices, including minimizing undercuts whenever possible, using a low-shrinkage material if the part has tight tolerances, situating parting lines strategically, and including chamfers or fillets wherever necessary.

Creating Quality Injection Molded Parts With SyBridge

Adding injection molded features can save time and money as long as the design is sound and follows best practices. However, improperly designed injection molded components can result in delays, faults, and brittle end products. To streamline the design and production processes, consider working with an experienced manufacturing partner like SyBridge.

At SyBridge, we know precision and quality are essential. When you work with us, you’ll receive expert advice and individualized attention. You’ll also be able to take advantage of our suite of online tools, where you can upload your design, evaluate different materials and manufacturing methods, and identify potential design pitfalls with automated DFM checks. Create an account or contact us today to see how SyBridge can help you bring your ideas to life.

Category: Knowledge CenterTag: Injection Molding

Related Articles

Injection molding

Is Multi-Cavity Injection Molding Right for Your Project?

Injection Molding

What Factors Contribute to Injection Mold Tooling Costs?

Medical Devices

How Injection Molding is Used in the Medical Industry

Injection Molding Parts

3 Tips for Creating Stronger Injection Molding Parts

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Acetal-and-Nylon

Know Your Materials: Acetal vs. Nylon

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy