• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / When to Use CNC Turning Over CNC Milling: Everything You Need to Know

When to Use CNC Turning Over CNC Milling: Everything You Need to Know

June 9, 2021 by SyBridge Technologies
CNC

Originally published on fastradius.com on CNC Machining

Computer Numerical Control (CNC) machining is a traditional manufacturing method that creates parts by removing material from a solid block, known as the workpiece or blank.

However, the term “CNC machining” can actually refer to a number of processes, each of which uses different tools and machines to shape the desired part. CNC milling, for example, uses rotary cutters and perpendicular motion to remove material from the face of the workpiece, while CNC drilling allows engineers to create holes and shapes into the blank with precise diameters and lengths.

Many CNC manufacturing processes involve applying spinning cutting tools to a fixed workpiece, but CNC turning is a machining method that works the other way around. By rotating the blank rather than the tool, this process enables the efficient production of a wide variety of cylindrical or oblong parts. Here’s what engineers and product teams need to keep in mind.

How CNC turning works

Generally, CNC turning produces parts by moving a cutting tool along the external surface of a rapidly spinning workpiece. This process creates a helical toolpath and results in highly axisymmetric parts. When applied to a blank’s internal surfaces, this same cutting action is known as “boring” — together, turning and boring comprise the larger subset of CNC processes known as CNC lathing.

lathe turning
Like other CNC manufacturing processes, lathe turning involves manufacturing engineers using digital CAD files to assist in programming the machine, effectively directing the movements of the cutting implements. The process has very few material limitations and can therefore be used to create parts from metal, plastics, and even wood.

While some of the smaller details vary by model and manufacturer, most CNC turning machines contain a similar set of parts. The ones most relevant to production include:

  • The chuck or collet: The chuck grips the workpiece and holds it firmly in place. Chucks can feature either a hard or soft jaw. Collets are typically used for smaller blanks.
  • The spindle: The spindle is the CNC turning machine’s rotating axis, which receives instruction from the CAM file regarding appropriate RPM.
  • The cutting tools: A tool turret carries the various cutting tools required for production and allows the machine to change tools as needed.

During production, the workpiece is inserted into the chuck, the spindle begins to rotate, and the cutting tools are applied to the piece’s surface to shape the part geometry.

Workpieces used in CNC turning are typically long and cylindrical, but may be square or hexagonal depending on part design. Hex brass ball valves, for instance, begin as hexagonal bars and are lathed on either side of the nut to create threads.

Key considerations for producing parts with CNC lathes

Whereas conventional lathe machines typically only allow for tooling along two axes (turning centers, however, will likely have some Y-axis capabilities), CNC turning machines allow for cutting operations to occur along three, four, or five axes. A few of these additional operations include:

  • Straight or cylindrical turning: This process can be used to create uniform cuts into the workpiece diameter and remove large amounts of material.
  • Taper turning: Taper turning produces a cylindrical shape with smooth decreases in diameter (similar to an hourglass shape).
  • Grooving: This process employs a shaped tool to produce narrow cavities in the workpiece.
  • Knurling: This technique involves cutting a serrated pattern of straight, angled, or crossed lines into the workpiece, giving the part additional grip.
  • Threading: This produces the threads seen on nuts and screws that allow objects to fasten together and can be applied to relatively large or small geometries.
  • Parting: Parting is used to cut the completed part from the original workpiece.

CNC turning is generally well suited for prototyping and low-volume production. However, when determining whether CNC lathe turning is the most cost-effective method of producing a part, one factor that needs to be taken into consideration is the outer diameter (OD) of the piece. This is because CNC turning machines have a maximum OD for bar-feed capable part production, and any part with an OD over the set limit will need to be chucked individually, which can drive up both production time and costs.

Another element to keep in mind is the CNC tools themselves. Many of these are cylindrically shaped with a limited cutting edge, which inherently determines how cuts can be made to the workpiece. This also means that design elements like internal corners will have a radius, regardless of how fine or small the size of the cutting tool.  CNC turning is well suited for creating undercuts (also known as neck or relief grooves). These are common on cylindrical turned parts and would be very cumbersome to manufacture on a CNC milling machine. If specialized cutting tools are called for, it’s important to remember that these present their own set of challenges. For instance, tools with longer shafts — which are useful for reaching deeper parts of workpiece cavities — increase the risk of vibration, less-accurate cuts, and poor surface finish.

When to consider CNC milling instead of CNC turning

While CNC turning offers unparalleled efficiency for producing parts with revolved profiles — such as bolts, ball bearings, and washers — it is not optimal for creating non-axisymmetrical pieces.

CNC milling — commonly used for automotive, aerospace, and furniture manufacturing applications, as well as in the production of robots and industrial-grade machinery — can also be used in tandem with CNC turning to add design features, such as flat faces, that are impossible to achieve otherwise.

CNC milling
CNC mills, which use clamps or a vice to hold workpieces in place while drills and cutting tools shave away material, are highly configurable and offer product teams greater flexibility in terms of part geometry and complexity.

SyBridge can get you started with CNC turning

In order to take full advantage of the benefits of CNC turning, product teams and engineers must familiarize themselves with a number of critical design and manufacturing considerations, including the part’s OD and the production run volume.

Partnering with an on-demand digital manufacturer like SyBridge can be the ticket to faster, more effective design and production. Our team of experts not only help to optimize part design for CNC turning, milling, or whatever combination of manufacturing processes is most efficient and cost-effective for a particular project — we also help to streamline supply chains and reduce operational risk for our customers. Contact us today to discover how we’re redefining what’s possible with modern manufacturing.

Category: Knowledge CenterTag: CNC Machining

Related Articles

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

CNC

The Ultimate CNC Machining Guide

Key Guidelines for Plastic CNC Machining

PC-ABS

Know Your Materials: Polycarbonate (PC)

CNC

Complete Guide to CNC Swiss Machining

Metal surface finishing

Comparing Different Types of Polishing Surface Finishes

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy