• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / An Overview of Sheet Metal Manufacturing

An Overview of Sheet Metal Manufacturing

October 19, 2020 by SyBridge Technologies
Sheet metal manufacturing

Originally published on fastradius.com on October 19, 2020

What do RF shields, airplane wings, automobile bodies, roofs, and ductwork have in common? They’re all made from sheet metal. Chiefly defined by its alloy and thickness, sheet metal ranges from 0.006 to 0.25 inches. Beyond these lower and upper bounds, metal is defined respectively as foil and plate. While especially ideal for large, durable parts with few features, sheet metal has many applications because it’s relatively economical and easy to form.

But what goes into creating sheet metal, and what should engineers and product managers consider?

Sheet metal production processes

Because there are a number of ways to manufacture sheet metal, it is a viable form of production for a myriad of projects. Each sheet metal process has its advantages and drawbacks, so manufacturers should choose the process that best suits their intended end use. These are among the most common sheet metal production processes:

Laser cutting

Laser cutting

Prior to the debut of laser cutting in the 1960’s, parts had to be manually milled to the desired shape. Laser cutting enables manufacturers to mass produce parts from sheet metal, drastically cutting down the production time.

Bending

As the most common sheet metal fabrication operation, bending involves the use of a press break to form an angle in a part. By bending sheet metal, manufacturers can exert a high level of control over where bends are located and to what degree they’re bent. However, bending cannot be used to create complex geometries.

Forming

To create complex geometries from sheet metal, manufacturers must turn to forming. Forming enables the addition of a number of small and detailed features, including dimples and louvers. Forming is also a good way to add stiffness to a sheet metal part.

Progressive Forming

Progressive forming takes forming to the next level, allowing teams to add even more complex features to a sheet metal product. Progressive forming also allows for an origami-like approach to shaping the sheet metal, enabling manufacturers to add features in a specific order to achieve the desired final product.

Types of sheet metal

Sheet metal can be made from almost any kind of metal, but the most common materials include aluminum, steel, and brass. Aluminum is by far the most commonly used; it’s affordable, easy to bend and form into shapes, and ideal for creating complex geometries. It’s also favored for its corrosion resistance.

Steel sheet metal

Steel, on the other hand, tends to be more appropriate for high-strength, structural applications. For example, it’s common to see steel used in buildings or in large machinery. Brass is usually reserved for more specialized applications, and particularly electrical applications.

Sheet metal design and production considerations

Because methods of sheet metal manufacturing are neither additive nor subtractive, designing for sheet metal fabrication comes with unique criteria that differ from those of other manufacturing processes.

Because sheet metal maintains consistent thickness throughout the production process, it influences bend radius, or how tight the bends can be and how close they can be to each other. Generally speaking, the thinner the material, the easier it is to form — but at the expense of stiffness.

sheet metal measurement

It’s also important to understand some key sheet metal characteristics. Bending, in particular, can present difficulties for manufacturers, but these concerns are relatively simple to address. Because bending stretches — and thus thins — the metal, features must be placed away from bends to avoid distortion. It’s typically recommended that designers maintain a standard distance of four times the material thickness from the bend.

Sheet metal is one of the most versatile materials available today, but designers, engineers, and product managers looking to leverage sheet metal must consider some of its unique properties and plan accordingly. Contact us today to get started.

Category: Knowledge CenterTag: Materials, Sheet Metal

Related Articles

Biocompatibility

Medical Device Manufacturing and Biocompatible Materials

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

thermoplastics thermosets

Thermoplastics vs. Thermosets: What’s the Difference?

Medical part manufacturing

How to Choose Tooling Materials for Medical Applications

PEEK

Know Your Materials: Polyetheretherketone (PEEK)

Polystyrene

Know Your Materials: Polystyrene (PS)

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy