• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
  • Capabilities
    • Design & Engineering
    • 3D Printing
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
Home / Resources / Three Soft Metals to Consider for CNC Machining

Three Soft Metals to Consider for CNC Machining

December 30, 2020 by SyBridge Technologies
CNC Machining

Originally published on fastradius.com on December 30, 2020

Naturally hard metals like tungsten and chromium are fairly rare in the manufacturing industry. In fact, most metals are naturally soft, relatively speaking, but made strong enough for manufacturing by adding alloys or bending, stretching, or hammering the material.

Soft, nonferrous (lacking iron) metals can be easy to cut and easy to machine, with only a minimal amount of post-process heat treating required. The most common soft metals for CNC machining are copper alloys, and common applications include jewelry making, plating, and electrical conduits. Aluminum often fills a similar role in CNC machining as these soft metals, but aluminum is widely-used enough to warrant its own conversation.

Soft metals are compatible with a number of manufacturing processes, but engineers and product teams frequently create parts with soft metals via CNC machining. Here’s everything that product teams need to know about machining with copper, bronze, and brass, the top three soft metals on the market today.

1. Copper

Copper
Copper C101, also known as “super-conductive copper,” is a 99.99% pure copper alloy well-known for its excellent electrical and thermal properties. It’s tough, ductile, malleable, and offers all of the benefits of pure copper with none of the machining difficulties.

Copper C101 is also unique due to its antimicrobial properties — testing conducted by the Environmental Protection Agency found that 355 copper alloys, including C101, killed more than 99.9% of bacteria within two hours of contact.

For that reason, copper is commonly found in high-contact points in the medical industry like bed rails, sinks, faucets, and toilet hardware. Other popular applications include electrical wires, electromagnets, and circuit boards in the semiconductor industry.

Although copper is corrosion-resistant in most marine and industrial environments, it can be corroded by halogens, sulfides, and ammonia-based solutions. Also, C101 is particularly susceptible to hydrogen embrittlement at elevated temperatures due to its high oxygen content.

Mechanical specifications:

  • Ultimate tensile strength: 310-380 MPa
  • Modulus of elasticity: 125 – 135 GPa
  • Elongation at break: 6-25%
  • Hardness: 27 HV
  • Thermal conductivity: 390 – 398 W/(m⋅°C)

2. Brass

Brass
Brass alloys are usually made of C101 combined with zinc. Manufacturers add zinc to make the material stronger and more ductile, but the ratio of zinc and other alloys affect its properties and color.

For example, a brass alloy containing 32-39% zinc is likely to have good hot-working capabilities but poor cold-working capabilities. Engineers and product teams should make a note of a brass alloy’s zinc content before making a final decision.

Many product teams work with 360 Brass because it has good tensile strength and natural corrosion-resistance. Plus, this material is highly machinable, weldable, and won’t cause undue wear and tear on the CNC machine.

However, this material does have its drawbacks. When brass comes into contact with ammonia or ammonia-based solutions, it becomes susceptible to stress corrosion cracking. In most cases, this limitation can be resolved by annealing during post-processing. From a financial standpoint, brass is one of the more expensive soft metals.

360 brass is ideal for low-friction applications and commonly used to make musical instruments, lock components, and gears. Since brass bears such a strong resemblance to gold, it also has a wide range of purely ornamental applications.

Mechanical specifications:

  • Ultimate tensile strength: 140 MPa
  • Elongation at break: 23%
  • Hardness: Rockwell B35
  • Density: 0.307 lbs / cu. in.
  • Maximum temperature: 1650°F

3. Bronze

Like brass, bronze alloys are composed of a copper base combined with other alloys. Tin is among the most common additions. The mechanical and physical properties of bronze change when phosphorus, aluminum, manganese, silicon, and other materials are added, which engineers and designers should keep in mind.

642 bronze is ductile, resistant to corrosion, galling, and fatigue, and has the highest machinability out of all brass and bronze alloys. Also, bronze outpaces copper when it comes to strength and corrosion resistance. Common applications for bronze alloys include musical instruments, medals, marine applications, and industrial applications such as aircraft bushings where a low friction metal is required. Unfortunately, bronze is expensive to work with due to its high copper content.

Mechanical specifications:

  • Tensile strength 517-621 MPa
  • Modulus of elasticity: 16,000 ksi
  • Modulus of rigidity: 6,000 ksi
  • Density: 0.278 lb/in3 at 68 °F
  • Electrical conductivity: 8% IACS at 68 °F

Selecting the right material for the job

Soft metals offer many advantageous properties to CNC machined parts. They’re generally easy to machine, naturally corrosion-resistant, and well-suited for a wide range of applications across industries. With brass and bronze in particular, engineers and product teams should be sure to double-check the alloy content of these soft metals, as adding additional elements is sure to affect the mechanical and physical properties of the final part.

For engineers and product teams, choosing the best-suited material for a given project is one of the most important decisions they must make during the development process. Product teams must do their due diligence to ensure they achieve their desired results, and an expert manufacturing and design partner like SyBridge can help.

SyBridge is a one-stop-shop for manufacturing innovation. Our experienced team can help engineers and product teams ensure their material choice will fulfill all critical requirements — at a price point and timeline that suits them. Let’s make new things possible, together. Contact us today.

Category: Knowledge CenterTag: CNC Machining

Related Articles

CNC

The Ultimate CNC Machining Guide

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Metal surface finishing

Comparing Different Types of Polishing Surface Finishes

Acetal-and-Nylon

Know Your Materials: Acetal vs. Nylon

Passivation

Passivation: Post-Processing for Rust and Corrosion Prevention

Chemical finishes

A Guide to Chemical Finishes for CNC Machined Parts

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (833) 824-1116

Copyright © 2025 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy