Originally published on fastradius.com on July 11, 2022
Injection molding involves melting and injecting plastic into a mold, cooling it, and ejecting the finished product. Injection molding is used across various industries, but it’s particularly instrumental in the medical supply and device industry, as it can produce large quantities of accurate, high-quality parts and is compatible with many medical-grade plastics.
Injection molding offers high levels of accuracy, compatibility with FDA-approved materials, the ability to achieve ISO 13485 compliance, and a low cost-per-part, making it ideal for many medical applications. Medical injection molding can be used to create components for dental X-ray equipment, catheter locks, diagnostic testing kit components, personal protection equipment, microfluidic devices, and surgical and drug delivery equipment.
Other medical plastic injection molding applications include orthopedics, syringes, Petri dishes, and pipettes, as well as parts, housings, and casings for medical devices, electronic devices, and computerized medical equipment. Injection molding is ideal for situations that require high volumes of durable, accurate, and sterilization-friendly parts.
Injection molding has plenty to offer the medical industry, including:
While creating tooling requires a significant amount of time and money upfront, injection molding is extremely cost-effective at high volumes. Bulk injection molding will spread the tooling cost across thousands of parts, lowering the overall cost-per-part.
Injection molding is known for its accuracy and repeatability, making it perfect for the medical industry, where the slightest mistake can cause a part or device to fail. Injection molding allows companies to quickly create hundreds or thousands of identical parts while providing exceptional accuracy and adhering to tight tolerances.
Compared to all other manufacturing processes, injection molding has one of the widest material selections. While some materials aren’t suitable for use in the medical industry, there are still many materials capable of meeting the industry’s various requirements and regulations.
Injection molded parts are quite strong and durable. They may also be resistant to vibrations, impacts, and harsh environments. Some are resistant to heat, meaning they can be easily and repeatedly sterilized via an autoclave without suffering any damage.
There are plenty of materials suitable for medical injection molding, but each medical-grade plastic has its own advantages, and each will perform differently. In addition to opting for a contaminant-resistant material that can be sterilized, consider:
In addition to the use-case and material-specific considerations that you need to make when manufacturing injection molded parts and products for the medical industry, there’s also the matter of compliance. The medical industry is highly regulated. This means that any parts or products that you make, whether through injection molding or another manufacturing process, must adhere to FDA regulations, as well as receive ISO certification and comply with the corresponding standards.
Injection molding is a precise, cost-efficient manufacturing method that results in high-quality parts and is capable of meeting the strict standards of the medical industry. There are countless applications for injection molding in the medical industry, but some materials are better suited for specific situations than others. To ensure you have the best design paired with the right material and can meet strict regulatory requirements, consider working with an injection molding expert.
At SyBridge, our expert engineers can help you refine your design and select the right material for your component. You can also access instant DFM analysis and more by uploading your designs to identify potential design pitfalls, reduce unnecessary production slowdowns, and lower your cost-per-part.
Create an account or contact us today to discover what SyBridge can do to help you make injection molded parts for the medical industry or other applications.
Forget typical cycle times. We're pushing the boundaries of conformal cooling. While traditional approaches deliver…
Forget typical cycle times. We're pushing the boundaries of conformal cooling. While traditional approaches deliver…
From left to right: Brayden Janak (apprentice); Logan Vifaquain (CNC machining, Programming and CMM); Ron…
SyBridge Technologies is proud to announce we have been awarded the 2023 General Motors Supplier…
Today, designers and engineers are accustomed to working with digital tools in their day-to-day jobs.…
Optimizing Your Injection Molding Process for Cost-Effective Manufacturing Excellence In today’s competitive landscape, manufacturers are…